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ABSTRACT 
Motivation:  The Gene Ontology (GO) is now the standard 
for describing gene and protein functions. By studying the 
protein function space as described by the GO, we can im-
prove the quality of functional predictions and automated 
annotations and ultimately, the quality of the GO structure. 
Results and Conclusions:  We present an approach for the 
large scale study of the protein function space, and propose 
a set of strategies to mine that space with the goal of detect-
ing erroneous or inconsistent annotations as well as underly-
ing relationships in the GO. 

1 INTRODUCTION 
'What does this gene do?' is a question biologists have posed 
time and again over the last decade. In our quest to address 
it, experimental determination of function gave way to func-
tion prediction based on sequence alignments, as the number 
of published genetic sequences grew beyond the resources 
for the former. We also adopted ontologies for functional 
annotation, as we stumbled upon the barriers of human lan-
guage and realized that traditional descriptions of gene 
product function were subjective and unamenable to compu-
tation. 

The Gene Ontology (GO) (The Gene Ontology Consor-
tium 2000) has become the standard for describing gene 
product function in a cellular context, and is used exten-
sively to annotate gene and protein databases. While the 
annotation effort is far from over, we can now for the first 
time have a glimpse of what the protein function space 
looks like by studying the topology of the GO annotation 
space. In doing so, we will expand our knowledge on pro-
tein functions, which will in turn allow us to better identify 
and correct missannotated proteins, and to improve the 
structure of the GO itself. Furthermore, by studying the rela-
tionship between the protein function space and the protein 
sequence space, we can improve the quality of function pre-
dictions and annotate new proteins more accurately. 

In this context, Lord et al. (2003) have applied semantic 
similarity measures to GO as a means to compare proteins 
on a functional level, and have correlated it with sequence 
similarity. Several other authors have since developed new 
semantic similarity measures for comparing proteins (Cha-
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balier et al. 2007, Pesquita et al. 2008, Pozo et al. 2008, 
Schlicker et al. 2006, Sheehan et al. 2008). 

On a distinct approach, Cross and Yi (2008) have pro-
posed the application of Formal Concept Lattices to GO 
annotations as a means of clustering and mapping proteins 
on the functional space.

Of particular relevance for this paper, Schlicker and 
Albrecht (2008) have introduced the concept of GO annota-
tion class (or GOclass) as the set of GO term annotations 
shared by one or more proteins. The authors noted that there 
were fewer combinations of GO term annotations than there 
were proteins, and adopted this concept to reduce the num-
ber of calculations necessary to calculate semantic similarity 
between all UniProt (The UniProt Consortium, 2008) pro-
teins. 

In this paper, we delve further into the concept of GO-
class, and apply it to the molecular function annotations of 
UniProt  proteins, as a means to study the protein function 
space on a large scale. 

2  METHODS 
2.1 Data Sources 
The GOclasses used in this work were derived from the Pro-
teInOn database (Faria et al. 2007), which integrates the 
GO, GOA (Barrel et al. 2009) and UniProt database. The 
update of ProteInOn used in this work was dated of Sep-
tember 26th, 2008, and included the most recent releases of 
its component databases available at that date. 

The calculations of the annotation frequency and informa-
tion content of each term were made as previously described 
(Faria et al. 2007), as was the implementation of the simGIC 
measure (Pesquita et al. 2008). 

2.2 GOclasses 
In accordance with Schlicker and Albrecht (2008), we de-
fine a GOclass as the set of GO terms constituted by the 
direct and inherited annotations of a given protein or set of 
proteins, irrespective of their evidence codes. However, in 
this work the concept of GOclass is only applied to molecu-
lar function annotations and will only be used in that con-
text. 

The following terminology will be used throughout the 
paper: 
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• An annotation (or a term of GOclass) is redundant if it 
is implied by another (more specific) annotation of the 
same protein (or another term of the same GOclass). 

• The set of non-redundant terms of a GOclass is the 
minimum set of terms necessary to completely identify 
a given GOclass. 

• An annotation is incomplete if it isn't sufficiently spe-
cific to suitably describe the real function of the pro-
tein, likely due to lack of knowledge about what that 
function is. For instance, the non-redundant annotation 
of a protein with the term binding is always incomplete, 
because a protein must necessarily bind to something, 
and thus be annotated with 'something' binding. By ex-
tension, a GOclass is incomplete if it contains at least 
one incomplete annotation. 

• An annotation is erroneous if it describes a functional 
aspect the protein doesn't have in reality. A protein is 
erroneously assigned to a given GOclass if any of its 
annotations are erroneous. 

• A GOclass is inconsistent if it contains terms that don't 
belong to the set of terms most commonly used to de-
scribe the protein function it represents, or if it doesn't 
contain all the terms in that set, as the result of diver-
gence of annotation criteria. 

• A GOclass specifies another GOclass if it includes one 
or more terms that are descendents of terms of the other 
GOclass and if all other terms are equal between both 
GOclasses. 

3 RESULTS AND DISCUSSION 
3.1 The Protein Function Space 
There are 33,346 molecular function GOclasses in UniProt, 
which is less than 1% of the total number of proteins with 
molecular function annotations (3.8 million). The true num-
ber of distinct protein functions is likely even smaller, con-
sidering that many of the GOclasses are artifacts resulting 
from incomplete, erroneous or inconsistent annotations. 

Remarkably, nearly half the GOclasses (15,094) are sin-
gletons (i.e. occur in only one protein), which is somewhat 
surprising considering the ubiquity of functional inference 
based on sequence alignments. Although some of these sin-
gletons are likely artifacts, the number of singleton GO-
classes is probably a good estimation of the true number of 
functional singletons in nature, precisely because of the 
ubiquity of functional inference. The fact that these are sin-
gletons suggests that their function was determined rather 
than inferred, and thus that their annotations are likely more 
reliable. Indeed the fraction of manually curated annotations 
in these singletons is 17.6%, whereas the global fraction of 
manually curated molecular function annotations is only 

0.6%. Another interesting aspect of the singletons is the fact 
that they do not contain terms significantly more specific 
than the remaining GOclasses (with the exception of 443 
GOclasses that include terms that are themselves single-
tons). This means that most singletons are unique due to 
unusual combinations of functional aspects which are not 
unusual in themselves. 

On the other end of the spectrum, the 80 GOclasses with 
more proteins represent 50% of all proteins. The majority of 
these are GOclasses with a single (often generic) term, such 
as the four most populous classes: {transporter activity}, 
{structural molecule activity}, {transcription factor activ-
ity} and {DNA binding}. However, there are exceptions 
such as the fifth: {cytochrome-c oxidase activity; electron 
carrier activity; iron ion binding; copper ion binding; heme 
binding}.  
 

 
Fig. 1. Distribution of the number of proteins per GOclass in a 
log-log scale. As evidenced by the linear behaviour, the distribu-
tion follows a power law until around 300 proteins per GOclass. 
Beyond that range the average behaviour of the distribution devi-
ates slightly from the power law, although it is not evident due to 
the typical fluctuations in the data.  

As can be seen in Figure 1, the distribution of the number of 
proteins per GOclass follows closely a power law. This be-
haviour is common in natural phenomena (Clauset et al., 
2009), and was to be expected in the case of this data due to 
the ramifying evolution of life. As organisms diverged ge-
netically and phenotypically, the protein functions wide-
spread through nature became very few and the unique func-
tions became many. However, despite the fluctuations ob-
served in the tail of the distribution (Figure 1), which are 
typical due to the low frequency of GOclasses in that range 
(Clauset et al., 2009), there is a noticeable deviation from 
the power law behaviour. That means that GOclasses with 
many proteins are occurring more frequently than would be 
expected if the data followed a power law distribution. This 
is likely due to the fact that many GOclasses in that range 
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are incomplete and do not correspond to detailed protein 
functions, as is clearly the case of the classes {transporter 
activity} and {structural molecule activity}. Thus, it is cru-
cial to indentify the GOclasses that are populous because 
they describe a function that is widespread in nature, such as 
{transcription factor activity} and {cytochrome-c oxidase 
activity; …} and exclude those that are populous because 
they are incomplete. 

One of the interesting properties of power law distribu-
tions is their scale invariance (Clauset et al., 2009). This 
means that despite the increasing number of proteins in our 
databases, we can expect the distribution of proteins per 
GOclass to keep the same behaviour, including the scaling 
exponent  that defines the slope in the logarithmic scale. 

3.2 Molecular Function as viewed by Proteins 
The number of non-redundant terms per GOclass ranges 
from 1 to 14, with 57% of the molecular function terms hav-
ing a GOclass for themselves, and 68 GOclasses having 10 
or more terms (see Figure 2). On average, it takes 3 molecu-
lar function terms to describe the function of a protein, a 
number that is likely to increase as annotations become 
more complete. 

 
Fig. 2. Distribution of the number of non-redundant terms per 
GOclass.  

Why do some protein functions require so many terms to be 
suitably described? Do these functions include so many dis-
tinct aspects, or are there implicit relationships between 
their terms that should be formalized in the GO graph? Fur-
thermore, are all proteins with the same function being de-
scribed consistently with the same sets of terms? 

The following are strategies that can be employed to mine 
the annotation space in order to address these questions, 
which will allow us to improve the quality of our annota-
tions and the structure of GO to better reflect the protein 
function space. 

3.2.1 Information Content
The information content (IC) provides a measure of a term's 
specificity based on its frequency of occurrency. Using the 
IC, we define as primary the most specific term belonging to 
a GOclasses and as secondary all remaining non-redundant 
terms. 

As can be seen in Figure 3, most GOclasses have a fairly 
specific primary term, with an average IC of 57%. However 
the large majority also have at least one secondary term that 
is more general, with an average IC of 26%. For instance, 
there are 957 GOclasses (totalling 82,211 proteins) which 
have the term binding as secondary term and 362 GOclasses 
(totalling 54,422 proteins) with catalytic activity as a secon-
dary term. These are cases which obviously need our atten-
tion, yet further analysis is necessary to determine if they 
correspond to incomplete or inconsistent annotations, or 
even if there is an underlying relationship that is not explicit 
in the GO. 

By searching for other GOclasses that contain the primary 
term of our GOclass of interest, we can see if there are GO-
classes that specify our GOclass regarding the general sec-
ondary term. If there are, then that secondary term may be a 
case of incomplete or inconsistent annotation, with the for-
mer being more likely if there are several populous GO-
classes that specify our GOclass of interest and the latter 
being more likely if there is only one populous GOclass. 

 
Fig. 3. Distribution of the minimum and maximum information 
content (IC) per GOclass (as determined by its non-redundant 
terms), in discrete intervals of 10% IC.  

3.2.2 Conditional Probability
We can estimate the conditional probability of a secondary 
term occurring when the primary term occurs by determin-
ing the number of GOclasses and the corresponding number 
of proteins in which the terms occur together and dividing 
by the total number of proteins in which the primary term 
occurs. If the conditional probability is high, then there may 
be an underlying relationship between the primary and sec-

3 



D.Faria et al. 

ondary terms, which can be considered for formalization in 
the GO or at least put forth as a guideline for annotation. 
The GOclasses that contain the primary term but not the 
secondary term should then be analyzed, to assess if they are 
cases of inconsistent annotation or exceptions which prevent 
the underlying relationship from being formalized. 

3.2.3 Semantic Similarity
Calculating the semantic similarity between GOclasses can 
also help us identify cases of inconsistent or incomplete 
annotation. While it is obvious that there are similar func-
tions within nature, very high simGIC values between two 
GOclasses mean that these classes differ only on general 
terms, and thus merit a detailed analysis. 

Although 91% of all pairwise combinations of GOclasses 
have simGIC values below 10%, there are 4,583 pairs with 
semantic similarity values between 90 and 100% and 12,544 
with values between 80 and 90% (not counting singleton 
GOclasses which were excluded due to computational re-
straints). 

3.2.4 A Case Study
As an example, let us select the most populous GOclass 
with more than one term, class: {cytochrome-c oxidase ac-
tivity; electron carrier activity; iron ion binding; copper ion 
binding; heme binding}, which has 63,658 proteins and as 
primary the term cytochrome-c oxidase activity, with an IC 
of 25%.  

There are 62 other GOclasses that contain this term,  total-
ling 89,166 proteins. The most populous of these GOclasses 
(with 14,298 proteins) has the same terms as our case study 
except for term copper ion binding and has a semantic simi-
larity of 96% with our case study. 

The conditional probability calculations reveal that iron 
ion binding has a 91% probability of being annotated when 
cytochrome-c oxidase activity is, electron carrier activity 
has a 90% probability, heme binding has an 89% probability 
and copper ion binding has a 73% probability. 

These findings would impell us to seek further informa-
tion on term cytochrome-c oxidase activity, upon which we 
would discover that the function it describes includes im-
plicitly the remaining terms found in our case study. 
Whether the relationships between these terms should be 
formalized in GO is beyond the scope of this paper, how-
ever, this information can at least help us correct incomplete 
or inconsistent annotations. 

4 CONCLUSIONS 
We have presented an approach to study the protein function 
space as described by GO molecular function annotation 
based on the concept of GOclass. The result that the distri-
bution of proteins per GOclass follows closely a power law 
suggests that despite the possible lack of quality of many 

annotations, the topology of the protein function space is 
similar to the annotation space. 

Furthermore, we propose a set of strategies to mine the 
annotation space with the goal of identifying erroneous, 
incomplete or inconscistent annotations, or even underlying 
relationships in the GO. These strategies will allow us to 
improve the quality and consistency of our annotations (par-
ticularly automated annotations) as well as improve the 
structure of the GO to better reflect the functional concepts 
present in nature. 
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